
1

All information Copyright Bayon
Technologies, Inc.

OWB Tuning

Methods to tune OWB mappings
and flows that leverage your
existing Oracle tuning
expertise!

2

All information Copyright Bayon
Technologies, Inc.

Need - Common Situation

� System loads 100k records daily with no
apparent issues (2 hour load time)

� 110k records = 4 hour load time
� 120k records = 12 hour load time
� 130k records = MAJOR PROBLEM

Most professionals need little convincing that building well tuned OWB code is of
benefit to the enterprise. Administrators and DW Developers often face
circumstances like the one enumerated above.

In low volume situations “tuned” OWB code is less critical because the system is not
adversely affected by inefficient application algorithms and storage structures. If an
organization is not already involved in an ongoing practice of tuning, the point at
which it becomes necessary to address the performance of OWB code is when it
affects the service level.

3

All information Copyright Bayon
Technologies, Inc.

Need - General

� DW deals with some
of the largest volumes
of data in enterprise

� Data volume is
growing, always.

� Efficient and effective
code is not just
desirable, it is crucial

0

50

100

150

200

250

300

350

2004 2006 2008

GB

The typical hockey puck of data volume growth is documented well by industry
associations, analysts, and our own experiences within our enterprises. The growth
of data is very real and it is likely that the volume for your data warehouse will be 4
times what it is today 3 years from now (18mo data volume growth average,
analyst)

The data warehouse has to face these issues head on. OLTP systems can limit
windows, offload data, etc. OLTP systems typically only have to deal with the
“current” growth. OLTP systems have to be able to handle volume = 4 times today,
3 years from now. However, the DW environment has to deal with the increased
volume cumulatively which compounds the issue. In other words, you have to pay
attention and expect the hockey puck.

In a DW environment, tuning is not just a good practice, it is crucial to meet the
actual requirements of projects (daily loads completing before start of business).

4

All information Copyright Bayon
Technologies, Inc.

What is OWB Tuning?

� The process of
�Measuring
�Analyzing
�Diagnosing
�Revising

� OWB solutions to
�Decrease loading times
� Increase efficiency

Measuring : We’ll measure clock time for mappings, throughput figures, algorithm
growth.

Analyzing : We’ll learn how generate diagnostic information, piece it together, and
leverage our existing knowledge of Oracle tuning.

Diagnosing : We’ll learn how to use all our available information to determine a root
issue, or possible solutions to decrease loading times or increase efficiency.

Revising : We’ll learn how to navigate the challenging task of tuning code we can’t
adjust directly. OWB code is generated, so we’ll learn how to do our best to tune
PL/SQL that we have only indirect control over.

5

All information Copyright Bayon
Technologies, Inc.

OWB Tuning Basics

� Goal = Tuned PL/SQL / Data Access
� OWB Tuning Methods provide:

�Monitoring, Measurements, and Diagnostic
information

� OWB Tuning Methods augment existing
Oracle tuning methods and expertise
�OWB Tuning = (Oracle tuning)++

Ultimately the goal is to entice OWB to produce tuned Oracle PL/SQL and data
structures. This is our only method to improve our DW performance outside of
purchasing additional hardware/software (and even then it might not improve).

OWB Tuning methods described in this module are meant to only be a “portion” of
the overall tuning practice. There are literally hundreds of books by just as many
authors that put forth methods on how to tune Oracle, Data Structures, SQL, and
PL/SQL. Oracle tuning as a subject warrants an entire course in and of itself, and
will not be covered here today.

OWB Tuning methods are methods to provide common diagnostic information so
that one can leverage their existing Oracle tuning expertise and knowledge.

6

All information Copyright Bayon
Technologies, Inc.

Two General “Methods”

1. OWB Runtime Data Analysis
� Macro level, elapsed time, throughput,

growth of time, etc.
2. Mapping/Process Flow Analysis

� Tracing specific mappings/process flows,
explain plans, use of idxes, etc.
� Mark Rittman/Jon Mead with SolStonePlus

developed the fundamentals of this method!

Method 1: OWB Runtime Data Analysis

This involves examination in greater detail the runtime audit information provided by
the OWB runtime engine. The web based interface provides only per-run reporting,
and there is currently not any Oracle provided interface for analyzing the data in the
Runtime Repository. We’ll examine some of the data available as Oracle views,
and we’ll understand what information is available to us. It provides performance
data on a macro level, and does not provide detailed diagnostic information (an
explain plan for instance).

Method 2: Mapping/Process Flow Analysis

We’ll learn how to set our mappings and process flows up to generate very detailed
information about how Oracle is processing our logic, and an entire wealth of
information used for common Oracle tuning practices. This includes being able to
“explain plan,” receiving information on wait events, etc. We’ll learn how to
implement these diagnostics in our mappings and process flows along with how to
collect and assemble them from our Oracle server.

7

All information Copyright Bayon
Technologies, Inc.

Overall Methodology
� Step 1: Determine candidates

for tuning
� Step 2 : Generate diagnostic

information on problem some
mappings/flows

� Step 3 : Use diagnostic
information as part of Oracle
tuning

� Step 4 : Adjust OWB mapping
and measure improvement

� RED = OWB Runtime Data
Analysis

� BLUE = Mapping/Process
Flow Analysis

Step 1:
Analyze OWB
Runtime Data

Step 2:
Generate

OWB
Diaganostics

Step 3:
Perform
Typical
Oracle
Tuning

Step 4:
Adjust OWB

Solution
and TEST

8

All information Copyright Bayon
Technologies, Inc.

OWB Data Analysis

� Based on “Wall Clock” analysis
� Sample of actual runs
� Relatively fine level of detail
� Unobtrusive

OWB Data analysis is the starting point for OWB tuning. The OWB runtime
repository keeps track of a significant amount of runtime data that can provide
information on throughput, volume/processing time, processing over time
(degradation), etc. The OWB runtime repository provides public views that can be
accessed using SQLPlus so you can write whatever reports you require.

Wall Clock analysis means that nearly all the information we’ll be able to obtain is
based on actual time, or more precisely elapsed time. It does not express any
metrics such as CPU time, wait time, I/O wait time, etc. We’re receiving information
on the actual time mapping x takes (1000 seconds for 20k records).

It’s based on actual runs of the mapping under real runtime conditions. It’s a true
sample of the actual performance of your OWB code, and should definitely be used
to document effectiveness. Unlike the Mapping/Flow tuning method, the OWB data
analysis has zero impact on your application and is entirely unobtrusive. You can
do OWB Data Analysis on your development, test, and PRODUCTION systems.

9

All information Copyright Bayon
Technologies, Inc.

OWB Data Analysis GOALS

� Establish baseline
� Monitor ongoing performance
� TUNING GOALS

� Identify Tuning Candidates
�Quantify ROI for tuning work

� Measure improvement

Knowing what you are beginning with is important; if you don’t actually know how long a mapping is taking then
you’ll have no way of knowing if you’ve made any improvements. Monitoring the ongoing performance through
the views provides a benefit to administrators so they can understand in greater detail how long their loads are
taking. For instance, an operator will almost always know the total load time (DW load kicks off at 1am, done by
7am). Seems like there’s some significant room for improvement since the load is taking 6 hours; however,
perhaps most of that time is spent retrieving over a slow DBLink one large table over the WAN? This kind of
insight into the granular performance is quite necessary and useful.

Our goals with tuning in mind are: identify potential candidates for tuning and quantify the benefit of tuning work.

Identifying tuning candidates involves identifying mappings/flows that are taking large amounts of time, or are
showing a pattern of performance degradation. If you run 100 mappings, but 85% of your load time is spent (on
average) in just 3 mappings you should consider tuning those mappings. If mapping x is taking 4 times as long
today with twice as much data it is showing that this particular mapping is not scaling linearly with data volume
and should be considered a candidate for tuning.

Quantifying the ROI for tuning is important to ensure a positive return on time and resources employed.
Improving a mapping with an average load time of 1 minute improves by 50% has limited value (30 seconds
probably won’t be noticed). Improving a mapping with an average load time 2 hours by 20% provides a
significant better investment in time and resources (24 minute improvement).

Lastly OWB data analysis can help you measure what actual performance improvements you delivered. This is
both useful in development systems (make a change, run the mapping, sample the new method) and also in
production (new mapping saves warehouse on average 28 minutes). Good for job security and making the
business case for performance tuning.

10

All information Copyright Bayon
Technologies, Inc.

Views Look Like?

� ALL_RT_AUDIT_EXE
CUTIONS
� execution_audit_id
� execution_name
� object_name
� elapse_time
� updated_on

� ALL_RT_AUDIT_MA
P_RUNS
� execution_audit_id
� map_name
� start_time
� elapse_time
� number_records_inser

ted

A full description of the views and data is available in the “Warehouse Builder
Public Views” Appendix in the OWB users guide.
http://download-west.oracle.com/docs/html/B12146_01/d_pub.htm#sthref3826

11

All information Copyright Bayon
Technologies, Inc.

Tuning Candidates
select

OBJECT_NAME name,
trunc(min(elapse_time)) min,
trunc(max(elapse_time)) max,
trunc(sum(elapse_time)) sum,
trunc(avg(elapse_time)) avg,
count(elapse_time) count
from all_rt_audit_executions
where 1=1
AND task_type = 'PLSQL'
AND created_on >=
to_date('12/10/2004',
'MM/DD/YYYY')
group by OBJECT_NAME
order by avg desc; 66853512243309map8

80964761272478map7

84867841353436map6

16361308921701018map5

1812145023511316map4

25672054235091672map3

19301135111689055494map2

20671165372319880map1

AVGSUMMAXMINNAME

An example report that shows the top candidates for tuning based on their average
amount of elapsed time. Notice that map1 and map2 require nearly 10x as much
time to complete as any other mappings. Map1 and map2 are prime candidates to
tune.

You also have an idea of what kind of performance gain you can hope to expect. If
you improve the avg time of map1 by 10% you'll save yourself approximately 20671
* .9 / 60 = approx 35min per execution.

12

All information Copyright Bayon
Technologies, Inc.

Monitoring Performance

� Throughput
(time / record)

� Scalability

0
500

1000
1500
2000
2500
3000
3500

500 2000

Records

Ti
m

e Map1
Map2
Map3

We can determine the throughput of our mapping, determining how many records
per second the mapping can process. This is useful to determine during testing, if
the hardware is sufficient to handle the estimated load.

Plotting mapping performance by data volume and elapsed time allows one to
determine how well the particular mapping will scale. Consider the above dataset:

Map1 appears to scale linearly with volume (twice as much data twice as much
time).
Map2 appears to gain efficiency with volume (we should all be so lucky) even
though more volume means additional elapsed time.
Map3 forms an exponential curve, and should be considered a candidate for tuning.

An increase in data volume poses a critical risk to mappings that exhibit behavior
like map3. Measuring and determining a mapping’s scalability “pattern”, ahead of
actually seeing the huge spikes in behavior will help prevent “fire fighting” drills of
tuning. This also allows for the ongoing observation and proactive improvement of
OWB mappings.

13

All information Copyright Bayon
Technologies, Inc.

OWB Tuning : Exercise 1

